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Evidence of Stochastic Resonance in a Laser 
with Saturable Absorber: Experiment and Theory 

A. Fioretti ,  1"2 L. Guidoni, 2 R. Mannella,  2 and E. Arimondo 2 

A laser with intracavity saturable absorber showing optical bistability is 
investigated through the simultaneous injection of modulation and noise on the 
pumping parameter; stochastic resonance is exhibited in the measured signal-to- 
noise ratio of the laser intensity. 
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1. I N T R O D U C T I O N  

A nonlinear phenomenon now commonly called stochastic resonance (SR) 
occurs when a small periodic signal superimposed on a broadband noise is 
processed by any sort of bistable system. If one measures the signal-to- 
noise ratio (SNR) of the output at the modulation frequency as a function 
of the injected noise, a curve with a peak appears. There is therefore a best 
noise level for which the bistable system acts as a selective amplifier in 
some range of frequencies. 

This phenomenon was pointed out for the first time in 1981 (1) in 
connection with the earth's ice ages. More recently there has been much 
theoretical w o r d  2,3) particularly regarding the onset of SR with respect to 
different types of noise sources and potentials. The main interest lies first 
of all in the possibility to have, under particular conditions, an enhanced 
SNR for noisy signals processed by bistable filters with respect to the 
standard linear ones, and then in understanding the role that the noise can 
have in the transmission of information in physical as well as in biological 
systems. 
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On another front, experimental evidence of the phenomenon of SR is 
not very common: an experiment using a Schmidt trigger as a bistable 
system (4~ and analog simulations (5) are examples of observations in elec- 
tronic devices. Applications to real physical systems include a modulated 
bidirectional ring laser, (6) an electron paramagnetic resonance system, (7) a 
free-standing magnetoelastic ribbon,(8) and passive optical systems./9) 

It has been claimed (6) that any system having a bistability or an 
hysteresis cycle should in principle show SR in the output signal. This is 
exactly the case of our laser, in which a bistability is present and can easily 
be observed as a function of either the pumping parameter or the laser 
frequency. 

In this work we have investigated, for the first time, the occurrence of 
SR in a laser with intracavity saturable absorber (LSA) by adding a 
modulation plus noise to the pumping parameter. Furthermore, we give 
an account of the results by exploring theoretically a model of the LSA 
that well reproduces its behavior over a wide range of the control 
parameters.(1~ 

An LSA is a quantum optical device consisting of a laser cavity where 
an amplifying as well as an absorbing medium are placed. 

The interaction between laser radiation and the two media strongly 
changes the behavior of the normal CO2 laser, which admits, under proper 
conditions and as a function of the pumping parameter, only the ON and 
OFF operating modes, with laser intensity respectively equal to zero and 
different from zero. In the LSA, for different values of the control 
parameters (examples are absorber pressure, laser frequency, and pumping 
intensity), different time evolutions are observed for the output radiation 
intensity: constant, periodic, and aperiodic or chaotic. 

The LSA is therefore a simple and reasonably well-controlled optical 
system showing nonlinear behavior. In the past years, a thorough 
experimental investigation of the aperiodic regimes has been performed and 
an interpretation in terms of homoclinic chaos has been given. (m 

In the LSA, optical bistability (OB) has also been observed, (12) that is, 
for an observable range of the mentioned control parameters, one can 
have the laser operating on two different stable modes, depending on the 
preceding time evolution. 

The model we used for the theory reproduces both these behaviors 
with a very good qualitative agreement and with a partially quantitative 
o n e .  

The work is organized in the following way: in Section 2 we describe 
the experiment, in Section 3 we report the experimental results, and in 
Section 4 we present a theoretical analysis. 



Stochastic Resonance in a Laser 405 

2. D E S C R I P T I O N  O F  T H E  E X P E R I M E N T  

A detailed description of the experimental setup shown in Fig. 1 can be 
found in ref. 11 and in references therein; here we will give only a brief 
summary. 

In our laser, the amplifying medium is CO2, which has several lasing 
lines in the infrared region between 9 and 11 #m, and the gaseous saturable 
absorber is SFG; the population inversion in the amplifier is obtained by an 
electric discharge, so the current intensity in this discharge plays the role 
of the pumping parameter. Through a reflection grating posed at one side 
of the optical cavity and an iris in the middle, the LSA can operate on 
single line and single mode (TEMoo). The laser radiation is monitored 
through a fast HgCdTe detector, with risetime <50 nsec. The electric 
discharge in the amplifying cell is driven by an HV current amplifier with 
a bandwidth larger than 50kHz. The noise generator, which has a 
bandwidth of 100 kHz, and the modulation are summed and sent to the 
current amplifier. 

The output of the detector and the discharge current are monitored 
simultaneously through a digital oscilloscope connected to a PC on which 
records of 32,000 points with 8-bit precision can be transferred 
simultaneously from both channels. An anti-aliasing filter was introduced 
when necessary for a successive calculation of the fast Fourier transform 
(FFT)  from the recorded signal. The typical sampling frequency we used 
for our data was 5 kHz. 
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Fig. 1. Experimental apparatus. The laser cavity, defined by a reflection grating and a semi- 
reflecting mirror, contains two cells for the absorber and the amplifier. The modulation and 
the quasi-Gaussian noise are summed and sent to the electric discharge of the amplifying 
medium through a current amplifier; the radiation is monitored by an HgCdTe detector 
connected to a digital oscilloscope. All the acquisition is controlled by a PC. 
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Fig. 2. Recording of the optical bistability relative to the LSA on the 10P(16) line with 
20 mTorr S F  6; the current modulation is a sinusoidal wave at 0.6 Hz frequency. 

The noise generator (13) is a dichotomic noise generator with clock 
frequency of about 5 MHz and a repetition period of some days. Through 
integration, the noise becomes Gaussianly distributed with a finite band- 
width. The frequency cutoff is larger than that of the current amplifier and 
both are much larger than the characteristic frequencies of our system, so 
the noise can be reasonably considered to be white. 
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Fig. 3. (a) Noisy modulation at 10 Hz frequency and (b) bistable signal of the LSA 
operating on the CO 2 10P(16) line with 20 mTorr SF 6. 
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OB in our laser can be observed by varying different control param- 
eters: absorber pressure, laser frequency (i.e., cavity length), and pumping 
parameter (i.e., current intensity). We chose to act on the pumping because 
it is the easiest to control. An example of OB between the ON and O F F  
solutions as a function of the pumping parameter is reported in Fig. 2. 

Our proposal was to investigate the occurrence of stochastic resonance 
on the switching signal by simultaneously applying a modulation and a 
Gaussian white noise on the pump parameter (current intensity of the 
electric discharge). 

The laser was set to operate inside the bistability region; then we 
added a modulation amplitude small enough not to cause a periodic 
switching between ON and OFF  states; as the noise on the pumping 
parameter is increased, random switches occur at increasing rate. 

The output laser intensity and the injected noise are then recorded for 
about 150 periods of the modulation and stored in the PC. A typical noisy 
modulation with the corresponding bistable signal is shown in Fig. 3. 

3.  R E S U L T S  

From the recorded bistable signal we calculated the FFT and 
measured the signal-to-noise ratio (SNR) defined as the amplitude of the 
FFT  component at the modulation frequency minus the background noise 
and divided by it. The background noise at the modulation frequency was 
evaluated from the neighbouring bins. In the case the signal was spread over 
multiple bins of the spectrum, we summed over the bins. From the recorded 
noisy signal we measured the noise variance. We reported the signal and 
the SNR as functions of the pump noise Np defined as the variance of 
the noisy modulation taken at the output of the current amplifier. In all 
our data the SNR shows the typical behavior of stochastic resonance, as 
reported in Fig. 4. 

We repeated our measurements for different values of the modulation 
frequency; the phenomenon seems to be robust in the range 0-100 Hz and 
the SNR peak has a dependence on the modulation frequency similar to 
that predicted by SR theory, as shown in Fig. 5. In fact, for increasing 
modulation frequencies, the peak occurs at bigger noise intensities and 
decreases in value. Peaks in the FFT  at integer multiples of the modulation 
frequency are also observed for spectra in the SR zone. 

Here we must comment that our spectra are not averaged spectra, 
because our system has a slight drift in time due to the thermic variations 
that modify the width of the bistability zone. The time scale of this varia- 
tion is about 10 min, so we cannot extend a series of measures over this 
time interval. 
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Fig. 4. Signal and signal-to-noise ratio response of the system for increasing values of the 
ratio of the noise to the amplitude modulation. Line 10P(16) with 20 mTorr SF6; modulation 
frequency, 38.5 Hz; noise cut at 100 kHz. 

Another control we made in our data was to process the records, via 
software, in a two-state filter so that any "intrawell motion" was 
eliminated. The computed SNR of the filtered signal did not differ from the 
original one and showed the same resonance peak. 

As last quantities, we measured the residence time in each state and 
the first return time defined as the sum of two subsequent residence times 
in the O N  and in the O F F  state. It turns out (see Fig. 6) that in the SR 
zone, defined by Fig. 4, the first return times are distributed mainly at 
integer multiples of the modulat ion frequency. 
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Fig. 5. Signal-to-noise ratio for different modulation frequencies: (a) 10 Hz, (b) 100 Hz. The 
laser conditions are the same as those of Fig. 4; the sampling frequency is 5 kHz. 
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First return times for some of the data in Fig. 4; the two central plots refer to data 
in the SR zone. 

4. THEORY 

The set of equations governing the LSA evolution (]~ is 

E = - ~  D + I + a I E I 2 + I  E+(( t )  

D= --~(D+ A + O I E I 2 ) - c l ( S -  O) (1) 

S =  - - y l ( S - -  D )  

where E represents the electric field amplitude, D the amplifier population 
difference, and S an auxiliary variable describing the population difference 
in other vibrational levels coupled to the amplifying one through collisions 
(the population difference in the absorber has been adiabatically eliminated), 
and ~(t) is a Gaussian complex white noise due to spontaneous emission. 
A and .~ are control parameters of the strength of the amplifier and the 
absorber, respectively. We take that the correlation of ((t) is given by 

(((t)  (*(s) ) = 4Ta(t - s) 

where a factor 2 comes from assuming that the real and imaginary parts of 
((t) are uncorrelated. 

If an adiabatic elimination, justified by the different time scales in the 
real system, of the D and S variables is carried out, the electric field 
amplitude (for small values) evolves as 

dE 
= aE+ b [El 2 E +  c IEI 4 E +  flU) (2) 

dt 
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i.e., it moves in the potential 

IEI 2 , IEI 4 IEI 6 
V(E) = - a  T -  o - - 4 - - -  c 6 (3) 

This potential corresponds to a marginal stability case for the solution 
E =  0, with two more solutions at + E s  .~14) The white noise is required to 
start the electric field evolution from the E = 0 solution. 

In the experiment, a modulation Fcos(cot) and an external noise r/(t) 
were applied to the A parameter in the middle equation of equations (1), 
giving 

A(t )  = A + F cos(cot) + t/(t) (4) 

We will assume in the following that the noise t/(t) can be described 
as a white noise with zero average and autocorrelation 

( i t( t)  q(s) ) = 2QS(t  - s) (5) 

although we should say that, on the time scale of the evolution of the 
variable D (the population difference) and S, the noise q(t) is really 
perceived as heavily colored (i.e., with a Lorentzian spectral density with 
cutoff at frequencies much smaller than those involved in the evolution of 
D and S). In passing, we note that the LSA perturbed as per Eq. (4) with 
F a step function has been extensively studied also in ref. 15. The adiabatic 
elimination now leads to 

E( A .(t) +_Fcos 
L ' = -  2 I + I + ~ I E I  2 l + I E I 2  1+1EI2 ] + ( ( t )  (6) 

To understand the behavior of the system described by Eq. (6), 
particularly regarding the phenomenon of stochastic resonance, it is 
convenient to look at the corresponding Fokker-Planck equation without 
periodic modulation. Details of the calculation will be given elsewhere. 
Incidentally, a similar laser model, without periodic modulation and with 
only additive noise, has already been studied within a Fokker-Planck 
approach in ref. 16. 

The final result is that the equilibrium distribution for the modulus of 
E becomes bistable in an appropriate range of parameters. The periodic 
modulation then induces switching between these two states, thus leading 
to SR in the system. The necessary ingredients are now the escape rates 
from these two states, which can be easily calculated. Finally, applying 
the linear response approach, (3) it is possible to calculate the response of 
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Fig. 7. Theoretical signal at the driving frequency (S) versus the intensity of the multi- 
plicative noise Q. For the other parameters (see text) we have A = 4.0, A = 0.5, D = 1 x 10-i2, 
co = 0.002, c~ = 5. Units are arbitrary�9 

the system as the various parameters are changed. We have plotted the 
expected response of the system (not the signal-to-noise ratio) as function 
of the amplitude of the multiplicative noise in Fig. 7. The overall shape is 
very similar to the analogous plot from the experiment. 

5. C O N C L U S I O N S  

In this work we investigated for the first time the onset of SR in a laser 
with saturable absorber operating in a bistable zone. We measured, as a 
function of the injected noise, the SNR and found that there is an opt imum 
noise value for which the system jumps regularly from one stable state to 
the other. 

We have also briefly accounted for the phenomenon from a theoretical 
point of view, using a well-established model for the LSA in its different 
behaviors. 

We look forward to investigating experimentally the bistability in the 
presence of modulation and injected noise on the absorbing medium 
through a Stark cell and will make a quantitative comparison between 
theory and experiments. 
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